Models

We develop a linear regression model for each plot using the lm() function built into R. We then find Pearson’s correlation coefficient \((R)\) to measure the strength of the relationship between our variables of interest.

\[y_i = \beta_0 + \beta_1X_i + \epsilon_i\] with \(y = dependent\:variable\), \(\beta_0 = intercept\), \(\beta_1 = regression\:coefficient\), \(X = independent\:variable\), and \(\epsilon = error\)

  Education Ranking
Predictors Estimates CI p Estimates CI p
(Intercept) 128.67 96.35 – 161.00 <0.001 156.84 116.79 – 196.88 <0.001
score -0.21 -0.28 – -0.14 <0.001
iq -1.37 -1.81 – -0.94 <0.001
Observations 56 56
R2 / R2 adjusted 0.408 / 0.397 0.426 / 0.415
  IQ
Predictors Estimates CI p
(Intercept) 25.03 17.06 – 33.00 <0.001
score 0.15 0.13 – 0.16 <0.001
Observations 56
R2 / R2 adjusted 0.841 / 0.838